1,094 research outputs found

    ‘Knotworking’ and ‘not working’: a realist evaluation of a culture change intervention with a frontline clinical team in an acute hospital

    Get PDF
    Culture change and teamwork are often cited in healthcare policy and research as central to improvements in patient care. A critical review of the literature suggests that theory is insufficiently used to inform culture change or team development interventions. Culture change interventions are rarely evaluated in implementation research with few rich qualitative accounts of clinical team development in context. This case study drew on the principles of realist evaluation to identify what worked, or did not work, for whom, in what circumstances in relation to an eighteen-month culture change intervention that had been carried out with a frontline clinical team identified as being in difficulty. It addressed the following research questions using multiple methods in a pragmatic and reflexive way: 1. How does a clinical team identified as being in difficulty experience a change process directed at changing team culture? 2. How do collaborative change processes engender culture change in the context of teams in difficulty? Conventional problem-solving approaches to team development were found to reinforce existing patterns of deficit relating leading to a critique of organization development practice. The project found that different contextualized experiences had different effects on the learning behaviour of the team and on the leadership-followership relationship. A critical appreciative approach and narrative methods were found to create psychological safety for a collaborative inquiry to take place. Building on previous theoretical research, the study proposes a reconceptualization of experiences of teamwork as emergent states of “knotworking” and “not working”. The project offers a framework for realist evaluation with clinical teams in difficulty. It recommends that intervention and evaluation are collapsed into a single approach of collaborative inquiry, and has provided easy to use resources for clinical teams to evaluate and improve their team culture in a climate of psychological safety. A practice model of creating a critically appreciative space is proposed and described. Narratives of patient care emerged as a source of generativity for team development, which led to reflections about how patient experience and involvement might support future team development interventions and directions for research

    Experimental investigation of some aspects of insect-like flapping flight aerodynamics for application to micro air vehicles

    Get PDF
    Insect-like flapping flight offers a power-efficient and highly manoeuvrable basis for micro air vehicles for indoor applications. Some aspects of the aerodynamics associated with the sweeping phase of insect wing kinematics are examined by making particle image velocimetry measurements on a rotating wing immersed in a tank of seeded water. The work is motivated by the paucity of data with quantified error on insect-like flapping flight, and aims to fill this gap by providing a detailed description of the experimental setup, quantifying the uncertainties in the measurements and explaining the results. The experiments are carried out at two Reynolds numbers-500 and 15,000-accounting for scales pertaining to many insects and future flapping-wing micro air vehicles, respectively. The results from the experiments are used to describe prominent flow features, and Reynolds number-related differences are highlighted. In particular, the behaviour of the leading-edge vortex at these Reynolds numbers is studied and the presence of Kelvin-Helmholtz instability observed at the higher Reynolds number in computational fluid dynamics calculations is also verified

    Genome-Wide Identification by Transposon Insertion Sequencing of Escherichia coli K1 Genes Essential for In Vitro Growth, Gastrointestinal Colonizing Capacity, and Survival in Serum.

    Get PDF
    Escherichia coli K1 strains are major causative agents of invasive disease of newborn infants. The age dependency of infection can be reproduced in neonatal rats. Colonization of the small intestine following oral administration of K1 bacteria leads rapidly to invasion of the blood circulation; bacteria that avoid capture by the mesenteric lymphatic system and evade antibacterial mechanisms in the blood may disseminate to cause organ-specific infections such as meningitis. Some E. coli K1 surface constituents, in particular the polysialic acid capsule, are known to contribute to invasive potential, but a comprehensive picture of the factors that determine the fully virulent phenotype has not emerged so far. We constructed a library and constituent sublibraries of ∼775,000 Tn5 transposon mutants of E. coli K1 strain A192PP and employed transposon-directed insertion site sequencing (TraDIS) to identify genes required for fitness for infection of 2-day-old rats. Transposon insertions were lacking in 357 genes following recovery on selective agar; these genes were considered essential for growth in nutrient-replete medium. Colonization of the midsection of the small intestine was facilitated by 167 E. coli K1 gene products. Restricted bacterial translocation across epithelial barriers precluded TraDIS analysis of gut-to-blood and blood-to-brain transits; 97 genes were required for survival in human serum. This study revealed that a large number of bacterial genes, many of which were not previously associated with systemic E. coli K1 infection, are required to realize full invasive potential.IMPORTANCEEscherichia coli K1 strains cause life-threatening infections in newborn infants. They are acquired from the mother at birth and colonize the small intestine, from where they invade the blood and central nervous system. It is difficult to obtain information from acutely ill patients that sheds light on physiological and bacterial factors determining invasive disease. Key aspects of naturally occurring age-dependent human infection can be reproduced in neonatal rats. Here, we employ transposon-directed insertion site sequencing to identify genes essential for the in vitro growth of E. coli K1 and genes that contribute to the colonization of susceptible rats. The presence of bottlenecks to invasion of the blood and cerebrospinal compartments precluded insertion site sequencing analysis, but we identified genes for survival in serum

    Evidence Favoring a Positive Feedback Loop for Physiologic Auto Upregulation of hnRNP-E1 during Prolonged Folate Deficiency in Human Placental Cells

    Get PDF
    Background: Previously, we determined that heterogeneous nuclear ribonucleoprotein E1 (hnRNP-E1) functions as an intracellular physiologic sensor of folate deficiency. In this model, l-homocysteine, which accumulates intracellularly in proportion to the extent of folate deficiency, covalently binds to and thereby activates homocysteinylated hnRNP-E1 to interact with folate receptor-α mRNA; this high-affinity interaction triggers the translational upregulation of cell surface folate receptors, which enables cells to optimize folate uptake from the external milieu. However, integral to this model is the need for ongoing generation of hnRNP-E1 to replenish homocysteinylated hnRNP-E1 that is degraded.Objective: We searched for an interrelated physiologic mechanism that could also maintain the steady-state concentration of hnRNP-E1 during prolonged folate deficiency.Methods: A novel RNA-protein interaction was functionally characterized by using molecular and biochemical approaches in vitro and in vivo.Results: l-homocysteine triggered a dose-dependent high-affinity interaction between hnRNP-E1 and a 25-nucleotide cis element within the 5'-untranslated region of hnRNP-E1 mRNA; this led to a proportionate increase in these RNA-protein complexes, and translation of hnRNP-E1 both in vitro and within placental cells. Targeted perturbation of this RNA-protein interaction either by specific 25-nucleotide antisense oligonucleotides or mutation within this cis element or by small interfering RNA to hnRNP-E1 mRNA significantly reduced cellular biosynthesis of hnRNP-E1. Conversely, transfection of hnRNP-E1 mutant proteins that mimicked homocysteinylated hnRNP-E1 stimulated both cellular hnRNP-E1 and folate receptor biosynthesis. In addition, ferrous sulfate heptahydrate [iron(II)], which also binds hnRNP-E1, significantly perturbed this l-homocysteine-triggered RNA-protein interaction in a dose-dependent manner. Finally, folate deficiency induced dual upregulation of hnRNP-E1 and folate receptors in cultured human cells and tumor xenografts, and more selectively in various fetal tissues of folate-deficient dams.Conclusions: This novel positive feedback loop amplifies hnRNP-E1 during prolonged folate deficiency and thereby maximizes upregulation of folate receptors in order to restore folate homeostasis toward normalcy in placental cells. It will also functionally impact several other mRNAs of the nutrition-sensitive, folate-responsive posttranscriptional RNA operon that is orchestrated by homocysteinylated hnRNP-E1

    Media Coverage of Muslim Devotion: A Four-Country Analysis of Newspaper Articles, 1996–2016

    Get PDF
    Scholars have identified Muslims’ religiosity and faith practices, often believed to be more intense than those of other religious groups, as a point of friction in liberal democracies. We use computer-assisted methods of lexical sentiment analysis and collocation analysis to assess more than 800,000 articles between 1996 and 2016 in a range of British, American, Canadian, and Australian newspapers. We couple this approach with human coding of 100 randomly selected articles to investigate the tone of devotion-related themes when linked to Islam and Muslims. We show that articles touching on devotion are not as negative as articles about other aspects of Islam—and indeed that they are not negative at all, on average, when focused on a key subset of devotion-related articles. We thus offer a new perspective on the perception of Islamic religiosity in Western societies. Our findings also suggest that if newspapers strive to provide a more balanced portrayal of Muslims and Islam within their pages, they may seek opportunities to include more frequent mentions of Muslim devotion

    Thermal, mechanical, and rheological properties of biocomposites made of poly(Lactic acid) and potato pulp powder

    Get PDF
    The thermal, mechanical, and rheological properties of biocomposites of poly(lactic acid) (PLA) with potato pulp powder were investigated in order to (1) quantify how the addition of this filler modifies the structure of the polymeric material and (2) to obtain information on the possible miscibility and compatibility between PLA and the potato pulp. The potato pulp powder utilized is a residue of the processing for the production and extraction of starch. The study was conducted by analyzing the effect of the potato pulp concentration on the thermal, mechanical, and rheological properties of the biocomposites. The results showed that the potato pulp powder does not act as reinforcement but as filler for the PLA polymeric matrix. A progressive decrease in elastic modulus, tensile strength, and elongation at break was observed with increasing the potato pulp percentage. This moderate loss of mechanical properties, however, still meets the technical requirements indicated for the production of rigid packaging items. The incorporation of potato pulp powder to PLA offers the possibility to reduce the cost of the final products and promotes a circular economy approach for the valorization of agro-food waste biomass

    Interference in Exclusive Vector Meson Production in Heavy Ion Collisions

    Get PDF
    Photons emitted from the electromagnetic fields of relativistic heavy ions can fluctuate into quark anti-quark pairs and scatter from a target nucleus, emerging as vector mesons. These coherent interactions are identifiable by final states consisting of the two nuclei and a vector meson with a small transverse momentum. The emitters and targets can switch roles, and the two possibilities are indistinguishable, so interference may occur. Vector mesons are negative parity so the amplitudes have opposite signs. When the meson transverse wavelength is larger than the impact parameter, the interference is large and destructive. The short-lived vector mesons decay before amplitudes from the two sources can overlap, and so cannot interfere directly. However, the decay products are emitted in an entangled state, and the interference depends on observing the complete final state. The non-local wave function is an example of the Einstein-Podolsky-Rosen paradox.Comment: 13 pages with 3 figures; submitted to Physical Review Letter

    High-throughput analysis of Yersinia pseudotuberculosis gene essentiality in optimised in vitro conditions, and implications for the speciation of Yersinia pestis.

    Get PDF
    BACKGROUND: Yersinia pseudotuberculosis is a zoonotic pathogen, causing mild gastrointestinal infection in humans. From this comparatively benign pathogenic species emerged the highly virulent plague bacillus, Yersinia pestis, which has experienced significant genetic divergence in a relatively short time span. Much of our knowledge of Yersinia spp. evolution stems from genomic comparison and gene expression studies. Here we apply transposon-directed insertion site sequencing (TraDIS) to describe the essential gene set of Y. pseudotuberculosis IP32953 in optimised in vitro growth conditions, and contrast these with the published essential genes of Y. pestis. RESULTS: The essential genes of an organism are the core genetic elements required for basic survival processes in a given growth condition, and are therefore attractive targets for antimicrobials. One such gene we identified is yptb3665, which encodes a peptide deformylase, and here we report for the first time, the sensitivity of Y. pseudotuberculosis to actinonin, a deformylase inhibitor. Comparison of the essential genes of Y. pseudotuberculosis with those of Y. pestis revealed the genes whose importance are shared by both species, as well as genes that were differentially required for growth. In particular, we find that the two species uniquely rely upon different iron acquisition and respiratory metabolic pathways under similar in vitro conditions. CONCLUSIONS: The discovery of uniquely essential genes between the closely related Yersinia spp. represent some of the fundamental, species-defining points of divergence that arose during the evolution of Y. pestis from its ancestor. Furthermore, the shared essential genes represent ideal candidates for the development of novel antimicrobials against both species

    Effect of Injection Rate and Post-Fill Cure Pressure on Properties of Resin Transfer Molded Disks

    Get PDF
    The effects of flow rate andpost-fill cure pressure, i.e., packing pressure, on the mechanical properties of resin transfer molded disks are experimentally investigated. An experimental molding setup is constructed to fabricate fiber-reinforced, center-gated, disk-shaped composite parts. Disks are molded at different flow rates and packing pressures in order to observe the effects of these parameters on the mechanical properties andvoidcontent of the final parts. Specimens are cut from three different locations in the molded disks for testing. Specimens from the first two locations are tensile testedto obtain strength and stiffness properties, and the third location is usedfor microscopic analysis to determine void content and void properties. Increased injection rate is found to reduce both the strength and stiffness of the molded parts due to more voids induced by the faster moving fluidfront. Packing pressure is also foundto have a significant effect on specimen properties. At higher packing pressures fewer voids and improved strength andstiffness are observed. Mechanical properties are correlatedwith total void fraction for disks molded at different packing pressures. Exponential decrease in both tensile strength andelastic modulus is observedwith increasing voidfraction. Doubling the voidvolume fraction from 0.35 to 0.72% results in a 15% decrease in strength and a 14% decrease in stiffness. The results demonstrate that selection of suitable injection rate and addition of packing pressure to resin transfer molding (RTM) process can improve mechanical properties of molded parts considerably.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
    corecore